The Base-sugar Conformation of Certain Derivatives of Adenosine

By David Gani and Alan W. Johnson,* School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 90J

Abstract

Base-sugar conformations of a range of adenosine derivatives have been confirmed by n.m.r. and c.d. measurements. The implications of the conformations for certain chemical properties, such as the formation of 5',8-cycloderivatives, are discussed.

In a previous paper, ${ }^{1}$ we have shown that the methyl group of 5^{\prime}-deoxy- $2^{\prime}-0,3^{\prime}$ - O-isopropylideneadenosine can be functionalised when the neighbouring $\mathrm{C}-8$ position on the adenine ring is converted into a radical, e.g. by irradiation of the 8-phenylthio-derivative. Under these conditions cyclisation was spontaneous and the product (1) was isolated in high yield. The mechanism shown in the Scheme based on radical intermediates, is envisaged for the reaction, although we have found no evidence for a cyclised deoxydihydroadenosine (2), as observed in a similar reaction by a French group. ${ }^{2}$ Somewhat lower yields were obtained when 8 -bromo- 5^{\prime}-deoxy- $2^{\prime}-0,3^{\prime}-O-$ isopropylideneadenosine was irradiated with tri-npropylsilane in the presence of t-butyl peroxide as a radical initiator. ${ }^{3}$

Cyclisation of $2^{\prime}-O, 3^{\prime}-O$-isopropylidene-8-phenylthioadenosine by u.v. irradiation has been described by Matsuda et al. ${ }^{4}$ when both (R) - and (S)-forms of the product, $\quad 2^{\prime}-O, 3^{\prime}$ - O-isopropylidene- $5^{\prime}, 8$-cycloadenosine [3(a) and 3(b), respectively], were obtained, together with up to 40% of $2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosine formed by hydrogen abstraction from the solvent. However, even after optimising the reaction conditions, the combined yield of both diastereoisomers of the cyclised product was only 30%, in contrast to the 5^{\prime}-deoxyseries where reaction under similar conditions ${ }^{1}$ gave almost quantitative conversion into the cyclised product (1). We have repeated Matsuda's experiments and have obtained comparable results, viz. ca. 20% of the (S)-5', 8 -cycloadenosine, ca. 10% of the (R)-isomer, 30% of the $2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosine, and $c a .2 \%$ of an unidentified fluorescent compound (possibly a dimer).

When the alternative method of cyclisation was applied to 8 -bromo-2'- $O, 3^{\prime}-O$-isopropylideneadenosine, i.e. u.v. irradiation with tri-n-propylsilane in the presence of t-butyl peroxide, the (S) - and the (R)-isomers were obtained in yields of $c a .8$ and 4%, respectively, together with $2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosine ($c a .10 \%$). The similarity of the product ratios from these experiments suggested that all the cyclisations proceeded by the same fundamental mechanism, viz. the generation of a radical at C-8.

However, the striking difference in the yields of $5^{\prime}, 8$ cyclised products in the adenosine and 5^{\prime}-deoxyadenosine series suggested that there may be conformational differences which depend on the presence or absence of the 5^{\prime}-hydroxy-group.

The determination of the conformation of adenosines and other nucleosides has been the subject of many investigations in which three main techniques have been employed: X-ray crystallography (e.g. refs. 5 and 6),

and n.m.r. (e.g. refs. 7--9), and c.d. (e.g. refs. 10-13) spectroscopy. In addition, the base-sugar conformation of $5^{\prime}, 3$ - and $5^{\prime}, 8$-cycloadenosine derivatives [compounds (4) and (1)] is fixed as syn- and anti-, respectively, and these compounds can be used as standards.

From the above accumulated physical evidence it is evident that, whereas adenosine itself exists in solution
predominantly in the anti-form [cf. compounds (1) and (3)], 8-bromoadenosine and its $2^{\prime}-O, 3^{\prime}-O$-isopropylidene derivative (5; $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}$) exist predominantly in the syn-form. However, in the solid state two crystalline forms of the isopropylidene derivative (5; R^{1}

$(R-)$
b; $X=$

($5-$)
$=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}$) are known, which have been shown by X-ray crystallography ${ }^{5}$ to differ in the base-sugar conformation. That obtained by slow crystallisation was shown to be the syn-isomer (Figure 1).

Although it is tempting to ascribe the syn-conformation of 8 -bromoadenosine to the presence of the bulky 8 -substituent this cannot be the sole cause because of the difference, in both physical and chemical properties,

between 8 -bromoadenosines and the corresponding 8 -bromo-5'-deoxyadenosines, e.g. the ease of $5^{\prime}, 8$-cyclonucleoside formation referred to above. Furthermore, the large difference ($>50^{\circ} \mathrm{C}$) in m.p. between 8 -bromoadenosine and 8 -bromo- 5 'deoxyadenosine suggested that internal hydrogen bonding, e.g. between $\mathrm{N}-3$ and $5^{\prime}-\mathrm{OH}$, might be playing a major role in the properties of the former compound. ${ }^{14}$ The i.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the bromo-derivative ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}$) showed a sharp signal at $3405 \mathrm{~cm}^{-1}\left(c a .3 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ associated with the $\left(5^{\prime}-\mathrm{OH}\right)-(\mathrm{N}-3)$ hydrogen bond.

Another consequence of this intramolecular hydrogen bond in 8 -bromoadenosine is to force the $\mathrm{C}-2^{\prime}$ ribose carbon out of the plane of the ring, thus causing the form-
ation of a large dihedral angle between $1^{\prime}-\mathrm{H}$ and $2^{\prime}-\mathrm{H}$ which is reflected in the large n.m.r. coupling constant observed for these two hydrogen atoms. ${ }^{7}$ A variable temperature n.m.r. study of the adenosine derivative ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}$) showed that the coupling interaction decreased with increasing temperature, but that the effect of the hydrogen bonding was evident even at

Figure 1 Schematic projection of syn-8-bromo-2'-O, 3^{\prime} -O-isopropylideneadenosine ${ }^{5}$
$70^{\circ} \mathrm{C}$. The coupling constant for the equivalent interaction in the 5^{\prime}-deoxy-analogue was small, suggesting a relatively planar $2^{\prime}-O, 3^{\prime}-O$-isopropylidene ribose configuration. Thus, it would appear that although 8bromoadenosine exists predominantly in its syn-form, 8 -bromo- 5 '-deoxyadenosine is not so restricted and does not exist exclusively as the syn-isomer. The synconformation of 8 -bromo- $2^{\prime}-O, 3^{\prime}$ - O-isopropylideneadenosine (5; $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}$) affects the course of its photolytic cyclisation, from which the (S) $-5^{\prime}, 8$-cycloadenosine enantiomer (3 b) is the major product (see above). The van der Waals interaction between the $1^{\prime}-\mathrm{H}$ of the ribose grouping and the j -bromo-substituent is such (Figure 1) that rotation about the ($\mathrm{N}-9$) $-\left(\mathrm{C}-1^{\prime}\right)$ bond is favoured in the direction in which this interaction is minimised. On incipient photolysis, the $\mathrm{Br}-\mathrm{C}$ bond dissociation promotes the rotation which causes the $\mathrm{C}-5$ '-hydroxymethyl group to rotate in a sympathetic fashion because of its interaction through the hydrogen bond, during which time the bromine atom departs. If both the purine and the $\mathrm{C}-5^{\prime}$ hydroxymethyl groups rotate at the same rate, then the $(S)-5^{\prime}, 8$-cycloadenosine (3b) should be the major product, as is observed.

Furthermore, the fact that hydrogen abstraction from the solvent is more pronounced in the adenosine series during the cyclisations is a direct consequence of the inability of the compounds to rotate as quickly, because of internal hydrogen bonding, as their 5^{\prime}-deoxyadenosine counterparts, i.e. the radical is exposed to the solvent for relatively long periods and therefore abstracts hydrogen. On the other hand, the 5^{\prime}-deoxynucleoside can rotate freely about the ($\mathrm{N}-9$) $-\left(\mathrm{C}-1^{\prime}\right)$ bond and therefore abstracts preferentially, and intramolecularly, a hydrogen atom
from C-5'. Abstraction of hydrogen from the solvent is relatively less important in this series.

It seems, therefore, that the existence or otherwise of ($\mathrm{N}-3$) $-\left(5^{\prime}-\mathrm{OH}\right)$ hydrogen bonding is the most important effect governing the conformation of the adenosines and the course of their radical-induced $5^{\prime}, 8$-cyclisation, and that this is more important than steric effects or electronic stabilisation of the intermediate 5^{\prime}-radical. In order to test this theory we have examined the properties of $2^{\prime}-O, 3^{\prime}-O$-isopropylidene- $5^{\prime}-O$-methyladenosine (5 ; $\left.\mathrm{R}^{1}=\mathrm{H}, \quad \mathrm{R}^{2}=\mathrm{OMe}\right) \quad$ which, lacking $\quad(\mathrm{N}-3)-\left(5^{\prime}-\mathrm{OH}\right)$ hydrogen bonding, should resemble 5^{\prime}-deoxy- $2^{\prime}-0,33^{\prime} 0-$ isopropylideneadenosine in its behaviour rather than the corresponding adenosine, i.e. the generation of a C-8 radical should favour the formation of the $5^{\prime}-O$-methyl$5^{\prime}, 8$-cycloadenosine at the expense of the solvent hydrogen abstraction product, $2^{\prime}-O, 3^{\prime}-O$-isopropylidene- $5^{\prime}-O$ methyladenosine. This compound was obtained from the corresponding $5^{\prime}-O$-mesyl derivative by reaction with methanolic sodium methoxide, and was converted into its 8 -bromo-derivative ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OMe}$) by direct bromination. In the n.m.r. spectrum of the 8 -bromo-compound, the ($\left.1^{\prime}-\mathrm{H}\right)-\left(2^{\prime}-\mathrm{H}\right)$ coupling was 2 Hz which (see above) suggests that the ribose ring is not buckled, as there can be no hydrogen bonding between the base and the $5^{\prime}-O$-methyl group. For the cyclisation experiments the bromo-derivative (5; $\mathrm{R}^{\mathbf{1}}=\mathrm{Br}, \mathrm{R}^{\mathbf{2}}=$ OMe) was converted, with thiophenol in methanolic sodium methoxide, into the 8 -phenylthio-derivative ($5 ; \mathrm{R}^{1}=\mathrm{SPh}, \mathrm{R}^{2}=\mathrm{OMe}$); this compound, like the parent bromo-compound, showed a coupling constant for ($\left.1^{\prime}-\mathrm{H}\right)-\left(2^{\prime}-\mathrm{H}\right)$ of only 2.5 Hz , thus suggesting a relatively planar ribose configuration. U.v. irradiation of the phenylthio-derivative ($5 ; \mathrm{R}^{1}=\mathrm{SPh}, \mathrm{R}^{2}=\mathrm{OMe}$) gave four products: the two major products were the (R) - and (S)-diastereoisomers of $\mathbf{2}^{\prime}-0,3^{\prime}-O$-isopropylidene$5^{\prime}$ - O-methyl- $5^{\prime}, 8$-cycloadenosine $\quad[3 ; \quad \mathrm{X}=\mathrm{CH}(\mathrm{OMe})]$ each in 35% yield (see Table). Some starting material
The product yields of $5^{\prime}, 8$-cycloadenosines obtained by irradiation of various 5^{\prime}-substituted $2^{\prime}-O, 3^{\prime}-O$-iso-propylidene-8-phenylthioadenosines

(ca. 10%) was recovered, and $2^{\prime}-O, 3^{\prime}-O$-isopropylidene-$5^{\prime}-O$-methyladenosine (5%), formed by hydrogen abstraction from the solvent, was isolated.

These results support the theory that ($\mathrm{N}-3$) $-\left(5^{\prime}-\mathrm{OH}\right)$ hydrogen bonding plays a major role in determining the conformation of 8 -substituted adenosines, and thus their physical and chemical behaviour.

The study of the conformations of adenosines has been extended to a range of 8 -substituted derivatives, e.g. compounds (5; $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{OMe}, \mathrm{SPh} ; \mathrm{R}^{2}=\mathrm{OH}, \mathrm{OMe}$, $\mathrm{Cl}, \mathrm{H})$; their $\mathrm{c} . \mathrm{d}$. spectra are discussed below.

In another series, a range of 8 -substituted- $5^{\prime}-0$-mesyl
derivatives was synthesised, e.g. compounds (5; $\mathrm{R}^{1}=$ $\left.\mathrm{H}, \mathrm{OH}, \mathrm{OMe}, \mathrm{Br} ; \mathrm{R}^{\mathbf{2}}=\mathrm{MsO}\right)$. The presence of a good leaving group at $\mathrm{C}-5^{\prime}$ facilitated displacement by the $\mathrm{N}-3$ lone pair to form the corresponding $3,5^{\prime}$-cycloadenosine salts. Among the factors which influenced the rate of cyclisation in this series was the conformation

Figure 2 C.d. spectra of $2^{\prime}-O, 3^{\prime}-O$-isopropylidene-5', 8-cycloadenosine (1) ($-\quad$), $\left(5^{\prime} R\right)-2^{\prime}-O, 3^{\prime}-O$-isopropylidene- $5^{\prime}-O-$ methyl-5 ${ }^{\prime}, 8$-cycloadenosine $[3 ; \quad \mathrm{X}=(R)$-CHOMe $](--)$, and $\quad\left(5^{\prime} S\right)-2^{\prime}-O, 3^{\prime}-O$-isopropylidene- $5^{\prime}-O$-methyl- $5^{\prime}, 8$-cycloadenosine $[3 ; \quad \mathrm{X}=(S)$-CHOMe $](\cdots)$ in water. All are anti-conformers
of the adenosines, and the order of stability was found to be $8-\mathrm{Br}<8-\mathrm{OMe}<8-\mathrm{OH}<8-\mathrm{H}$, i.e. in qualitative agreement with the degree of syn-conformation, even after correction for electron density at N-3. Measurements of the c.d. spectra of the adenosine derivatives described here have been determined and conformations

Figure 3 C.d. spectra of adenosine (. . •), 5'-chloro-5'-deoxyadenosine $(---)$, and 5^{\prime}-deoxy- $2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosine (5; $\mathrm{R}^{\mathbf{1}}=\mathrm{R}^{\mathbf{2}}=\mathrm{H}$) (-) in water
can be deduced within a series containing a common chromophore, although no overall generalisations can be made on the basis of c.d. spectra for compounds having markedly different structures. The $5^{\prime}, 8$-cycloadenosines (3) can be taken as obvious examples of adenosines with an anti-configuration. However, substitution at the 5^{\prime}-position, e.g. by methoxy as in compounds (3a)

Figure 4 C.d. spectra of 8 -bromo-2'- $O, 3^{\prime}$ - O-isopropylidene-5^{\prime}-O-mesyladenosine ($\left.5 ; \quad \mathrm{R}^{\mathbf{1}}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{MsO}\right)(----)$ and the corresponding syn-3,5'-cycloadenosine (4) ($\cdot \cdots$)
and (3 b), has a profound effect on the spectrum (Figure 2) and structural deductions on the basis of line shapes have to be made with caution. Adenosine itself is known to possess the anti-configuration, and the c.d. spectra of some simple adenosines are given for comparison (Figure 3). Substitution of the non-hydrogen bonded 5^{\prime}-hydr-oxy-group by chlorine or hydrogen has little effect on the spectrum.

Figure $5 \quad$ C.d. spectra of 8 -bromo- $2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosine ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}$) ($\cdot \cdots$), 8-bromo-5'-deoxy- $2^{\prime}-O, 3^{\prime}$ -O-isopropylideneadenosine ($5 ; \quad \mathrm{R}^{1}=\mathrm{Br}, \quad \mathrm{R}^{2}=\mathrm{H}$) $(---)$, and 8-bromo- $2^{\prime}-O, 3^{\prime}$ - O-isopropylidene- $5^{\prime}-O$-methyladenosine (5; $\left.\mathrm{R}^{\mathbf{1}}=\mathrm{Br}, \mathrm{R}^{\mathbf{2}}=\mathrm{OMe}\right)(\square)$

The $3,5^{\prime}$-cycloadenosine salts (4) obviously possess the syn-conformation, and the change in c.d. spectral shape between the parent $5^{\prime}-O$-mesyl derivatives and the corresponding $3,5^{\prime}$-cycloadenosine salts is very striking '(Figure 4). The c.d. spectrum of 8 -bromo- $\mathbf{2}^{\prime}-0,3^{\prime}-O-$ isopropylideneadenosine ($5 ; \quad \mathrm{R}^{1}=\mathrm{Br}, \quad \mathrm{R}^{2}=\mathrm{OH}$) is similar to that published ${ }^{10}$ for 8 -bromoadenosine, and in acetonitrile it showed only trivial changes in line shape over the temperature range -40 to $+60^{\circ} \mathrm{C}$. The c.d. spectrum of the deoxy-compound (5; $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{H}$) was weak in comparison and the line shape was markedly
different (Figure 5); again, there was little change in the spectrum with increasing temperature. Furthermore, the spectrum of 8 -bromo- $2^{\prime}-0,3^{\prime}-O$-isopropylidene- $5^{\prime}-O$ methyladenosine ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OMe}$) resembled that of the 5^{\prime}-deoxy-compound ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{H}$) rather than the adenosine ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}$), indicating that the first two compounds, lacking the

Figure 6 C.d. spectra of 8 -methoxyadenosine (----) and 5^{\prime}-deoxy- 2^{\prime} - $O, 3^{\prime}$ - O-isopropylidene-8-methoxyadenosine \quad (5; $\left.\mathrm{R}^{\mathbf{1}}=\mathrm{OMe}, \mathrm{R}^{\mathbf{2}}=\mathrm{H}\right)(\cdots)$
($\mathrm{N}-3$)-(5-OH) hydrogen bond, do not exist entirely in the syn-conformation.

A situation similar to that observed with the 8 -bromocompounds exists in the 8 -phenylthio-series, i.e. $2^{\prime}-0,3^{\prime}-$ O-isopropylidene-8-phenylthioadenosine (5; $\mathrm{R}^{1}=\mathrm{SPh}$, $\mathrm{R}^{2}=\mathrm{OH}$) exists in the syn-conformation, but the corresponding $5^{\prime}-\mathrm{O}$-methyl ether, lacking the ($\left.\mathrm{N}-3\right)^{-}-\left(5^{\prime}-\mathrm{OH}\right)$ hydrogen bond, possesses a less rigid conformation.

The c.d. spectra of the 8 -substituted $-2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosines (5; $\mathrm{R}^{\mathbf{1}}=\mathrm{OMe}, \mathrm{R}^{\mathbf{2}}=\mathrm{H}, \mathrm{OH}$) and (5; $\mathbf{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{Cl}$) were similar (Figures 6 and 7) and all differed from the c.d. spectrum of 8 -bromo-$2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosine (Figure 5). The c.d. and n.m.r. spectra of these compounds suggest that (N-3)($5^{\prime}-\mathrm{OH}$) hydrogen bonding does not occur to any sig-

Figure 7 C.d. spectra of 5^{\prime}-chloro-8-hydroxy-2'-O, 3^{\prime} - O-isopropylideneadenosine (5; $\left.\mathrm{R}^{\mathbf{1}}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{Cl}\right)(---)$, and 8-hydroxy- $2^{\prime}-O, 3^{\prime}$-O-isopropylideneadenosine (5; $\quad \mathrm{R}^{\mathbf{1}}=\mathrm{R}^{2}=$ $\mathrm{OH})(\cdots \cdot)$
nificant extent when the 8 -substituent is hydroxy or methoxy. In the 8 -hydroxy- and 8 -methoxy-compounds (5; $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{OMe}$) there appears to be relatively free rotation about the ($\mathrm{N}-9$)-(C-1') bond and no particular conformation is favoured.

EXPERIMENTAL

Spectra were measured on the instruments detailed in a previous paper. ${ }^{1}$ C.d. spectra were recorded using a JASCO J4OCS spectrometer. The spectra were repeated for each sample, at a slow scan speed, and the mean of the two curves calculated. All the samples were prepared so that the optical density at $\lambda_{\text {max. }}$ was between 0.7 and 1.4 absorbance units. Variable temperature c.d. experiments were conducted on the same machine using an internal thermocouple to monitor the sample temperature. All mass spectra showed fragmentation patterns corresponding to the postulated structures.
2^{\prime}-O, 3^{\prime}-O-Isopropylidene-5'-O-p-tosyladenosine $\left(5 ; \quad \mathrm{R}^{1}=\right.$ $\mathrm{H}, \mathrm{R}^{2}=\mathrm{TsO}$).-This compound was prepared following Todd, Clark, and Zussman, ${ }^{15} \delta\left[\left(\mathrm{CD}_{3}\right) \mathrm{SO}\right] 8.3(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$, $8.03(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.4$ and $6.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{AB}, \mathrm{B}^{\prime} \mathrm{A}^{\prime}\right.$ type $p-$ substituted benzene coupling), 7.15 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}$), 6.05 $\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.75(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 4.1\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of tosyl), and 1.35 and $1.15(3 \mathrm{H}, \mathrm{s}$, acetonide).
2^{\prime}-O, 3^{\prime}-O-Isopropylidene-5'-O-mesyladenosine $\quad\left(5 ; \quad \mathrm{R}^{1}=\right.$ $\mathrm{H}, \mathrm{R}^{2}=\mathrm{MsO}$).- $\mathbf{2}^{\prime}-O, 3^{\prime}-O$-Isopropylideneadenosine (1.2 g , 3.9 mmol) was dissolved in dry pyridine (15 ml). The solution was cooled to $0^{\circ} \mathrm{C}$ and methanesulphonyl chloride ($0.55 \mathrm{~g}, 4.8 \mathrm{mmol}$) was added dropwise with stirring during 5 min . After 90 min at $10^{\circ} \mathrm{C}$ the excess of the sulphonyl chloride was hydrolysed with ice-water (5 ml) and the solution neutralised with 2 m -aqueous potassium hydroxide. The solvents were removed under reduced pressure and the residue partitioned between chloroform (80 ml) and water $(20 \mathrm{ml})$. The organic layer was separated, washed, and evaporated to yield $1.4 \mathrm{~g}(90 \%)$ of the $5^{\prime}-O$-mesyl compound, $R_{\mathrm{F}} 0.4$ (on silica plates in $\mathrm{CHCl}_{3}-\mathrm{EtOH} 10: 1$) (Found: M^{+}, 385. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$ requires $\left.M, 385\right)$; $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7\right)$ 259 nm ($\varepsilon 16000$), changing to 280 nm on heating to $60^{\circ} \mathrm{C}$ for $4 \mathrm{~h} ; \delta\left(\mathrm{CDCl}_{3}\right.$ with $\left.\mathrm{D}_{2} \mathrm{O}\right) 8.05(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.64(1 \mathrm{H}$, s, $8-\mathrm{H}), 5.90\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.30(1 \mathrm{H}, \mathrm{dd}, J 6$ and 2 $\left.\mathrm{Hz}, 2^{\prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.31\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right)$, $2.80(3 \mathrm{H}, \mathrm{s}, \mathrm{MsO})$, and 1.53 and $1.31(3 \mathrm{H}, \mathrm{s}$, acetonide).
2^{\prime}-O, 3^{\prime}-O-Isopropylidene-5'-O-methyladenosine ($5 ; \mathrm{R}^{1}=$ $\left.\mathrm{H}, \mathrm{R}^{2}=\mathrm{OMe}\right)$.-To a solution of $2^{\prime}-O, 3^{\prime}-O$-isopropylidene-$5^{\prime}-O$-mesyladenosine ($800 \mathrm{mg}, 2.1 \mathrm{mmol}$) in methanol (15 ml) was added a small piece of sodium ($200 \mathrm{mg}, 8.7 \mathrm{mmol}$) and the mixture was heated to $60^{\circ} \mathrm{C}$ for 2 h and then cooled to room temperature overnight. The solution was treated with ice-water (5 ml) and was neutralised with 2 m -hydrochloric acid. The methanol was removed under reduced pressure, the aqueous residue extracted with chloroform ($3 \times 15 \mathrm{ml}$), and the organic layer reduced in volume to 5 ml and applied to two silica plates (each $1 \mathrm{~m} \times 20 \mathrm{~cm} \times 1.2$ mm) and eluted ($\mathrm{CHCl}_{3}-\mathrm{EtOH} 10: 1$). The least polar band ($R_{\mathrm{F}} 0.48$) was removed and worked up to yield $300 \mathrm{mg}(50 \%)$ of $2^{\prime}-O, 3^{\prime}-O$-isopropylidene- $5^{\prime}-O$-methyladenosine as white crystals together with starting material (20%) and the $3,5^{\prime}-$ cycloadenosine salt (20%), m.p. $137-139{ }^{\circ} \mathrm{C}$ (from EtOH$\mathrm{H}_{2} \mathrm{O} 1: 1$) (Found: M^{+}, 321. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires M, 321) ; $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7\right) 259 \mathrm{~nm}(\varepsilon 15800)$; $\delta\left(\mathrm{CDCl}_{3}\right.$ with $\left.\mathrm{D}_{2} \mathrm{O}\right) 8.15(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.81(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{d}$,
$\left.J 2.5 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.18\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.2.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.85$ $\left(1 \mathrm{H}, \mathrm{dd}, J 2.5\right.$ and $\left.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.35\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.48$ (2 $\left.\mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right), 3.23(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and 1.59 and 1.36 ($3 \mathrm{H}, \mathrm{s}$, acetonide).

5'-Chloro-5'-deoxyadenosine.-This compound was prepared following Kikugawa and Ichino ${ }^{16}$ (see also Gani et al. ${ }^{17}$) ; the product had m.p. $190{ }^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (lit., ${ }^{16} 190^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 40.8 ; \mathrm{H}, 4.75$; $\mathrm{Cl}, 12.25 ; \mathrm{N}, 23.7$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O}_{3}$: C, $40.8 ; \mathrm{H}, 4.45 ; \mathrm{Cl}, 12.05$; $\mathrm{N}, 23.75 \%$); $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.33(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 8.18(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.26(2 \mathrm{H}$, br s, NH_{2}), $5.97\left(1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.87\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, $4.23\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.11\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, and $3.92(2 \mathrm{H}, \mathrm{d}$, $\left.J 3 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right) ; \delta\left({ }^{(3} \mathrm{C}\right)\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 155.95(\mathrm{C}-6), 152.73(\mathrm{C}-2)$, 149.33 (C-4), $139.80(\mathrm{C}-8), 119.06$ (C-5), $87.66\left(\mathrm{C}-1^{\prime}\right), 83.55$ ($\mathrm{C}-4^{\prime}$), 72.94 ($\mathrm{C}-2^{\prime}$), 71.21 ($\mathrm{C}-3^{\prime}$), and $44.81\left(\mathrm{C}-5^{\prime}\right)$.

A sample prepared by dilute acid hydrolysis of the $2^{\prime}-O, 3^{\prime}-O$-isopropylidene derivative ${ }^{1}$ was identical with the above product.

8-Bromoadenosine.-This compound was prepared following Ikehara and Kaneko. ${ }^{18}$ The product had m.p. $205{ }^{\circ} \mathrm{C}$ (decomp.) [lit., ${ }^{18}>200{ }^{\circ} \mathrm{C}$ (decomp.)] (Found: C, 35.1; H, 4.0; $\mathrm{N}, 20.2$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrN}_{5} \mathrm{O}_{4}$: C, 34.7; $\mathrm{H}, 3.5$; $\mathrm{N}, 20.2 \%)$; $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 265 \mathrm{~nm} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.98$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.41\left(2 \mathrm{H}\right.$, br ds, $\left.\mathrm{NH}_{2}\right), 5.72(1 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 5.05\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.09\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.82(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right)$, and $3.51\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$.
The corresponding $2^{\prime}-O, 3^{\prime}-O$-isopropylidene derivative was prepared (70%) according to Ikehara, Tada, and Kaneko ${ }^{19}$ and had m.p. 221-222 ${ }^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{17} 221-222{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 40.1 ; \mathrm{H}, 4.5 ; \mathrm{N}, 17.9$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrN}_{5} \mathrm{O}_{4}$: C. $40.4 ; \mathrm{H}, 4.2 ; \mathrm{N}, 18.1 \%)$; $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 264 \mathrm{~nm}(\varepsilon$ $17500) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.97(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.87(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 5.75\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{NH}_{2}\right), 5.13(1 \mathrm{H}, \mathrm{dd}, J 5$ and 6 Hz , $\left.2^{\prime}-\mathrm{H}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, $3.75\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$, and 1.57 and $1.30(3 \mathrm{H}, \mathrm{s}$, acetonide) ; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.00(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.37\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{NH}_{2}\right), 5.93(1$ $\left.\mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.63\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.02$ $\left(1 \mathrm{H}, \mathrm{dd}, J 3\right.$ and $\left.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right)$, $4.21\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.55(2 \mathrm{H}$, d, $\left.J 6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right)$, and 1.69 and $1.48(3 \mathrm{H}, \mathrm{s}$, acetonide).

8-Bromo-2'-O, 3^{\prime}-O-isopropylidene-5'-O-mesyladenosine (5; $\mathrm{R}^{1}=\mathrm{Br}, \quad \mathrm{R}^{2}=\mathrm{MsO}$).-8-Bromo-2'-O, $3^{\prime}-O$-isopropylideneadenosine was treated with methanesulphonyl chloride as described above to yield the mesyl ester (90%) as an amorphous solid [Found: $M^{+}, 465$, 463. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrN}_{5} \mathrm{O}_{6} \mathrm{~S}$ requires $M, 465,463$ (Br isotopes)]; $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7\right) 266$ $\mathrm{nm}(\varepsilon 17500)$, changing to $297 \mathrm{~nm}(\varepsilon 12500)$ after heating at $60^{\circ} \mathrm{C}$ for 90 min ; $\delta\left(\mathrm{CDCl}_{3}\right) 8.05(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{d}$, $\left.J 2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.52\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.10(1 \mathrm{H}$, dd, $J 3$ and $\left.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.35\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 2.84$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MsO}$), and 1.57 and $1.36(3 \mathrm{H}, \mathrm{s}$, acetonide).

8-Bromo-2'-O, 3^{\prime}-O-isopropylidene-5'-O-methyladenosine ($5 ; \mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OMe}$).-2'-O, $3^{\prime}-O$-Isopropylidene- $5^{\prime}-O$ methyladenosine (as above; 180 mg) was stirred in a solution of methanol (3 ml), water (25 ml), and acetic acid (1 ml), containing sodium acetate (2 g), and saturated bromine water was added dropwise until the colour just persisted. The solution was kept overnight and then treated with sodium metabisulphite until the bromine colour was just discharged. The solution was extracted with chloroform $(2 \times 25 \mathrm{ml})$ and the solvent evaporated under reduced pressure to yield $155 \mathrm{mg}(70 \%)$ of 8 -bromo- $2^{\prime}-O, 3^{\prime}-O$-iso-propylidene- $5^{\prime}-O$-methyladenosine as an off-white solid, m.p. $154{ }^{\circ} \mathrm{C}$ (decomp.) [Found: $M^{+}, 401,399 . \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrN}_{5}{ }^{-}$ O_{4} requires $M, 401,399$ (Br isotopes)]; $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7\right)$ $264 \mathrm{~nm}(\varepsilon 17500) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.91(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.96(1 \mathrm{H}, \mathrm{d}$,
$\left.J 2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.46\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.93(1 \mathrm{H}$, dd, $J 4$ and $6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), 4.16 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), 3.47 ($2 \mathrm{H}, \mathrm{s}$, $\left.J 6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right), 3.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and 1.60 and $1.39(3 \mathrm{H}, \mathrm{s}$, acetonide).

8-Methoxyadenosine.-This compound was prepared by a modification of the method of Holmes and Robins. 20 The product (70%) had m.p. $204{ }^{\circ} \mathrm{C}$ (decomp.) [lit., ${ }^{20} 206-208{ }^{\circ} \mathrm{C}$ (decomp.)], $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 260 \mathrm{~nm}$; $\lambda_{\text {max. }}(\mathrm{pH} 1) 261 \mathrm{~nm}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.00(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.71(1 \mathrm{H}$, d, $\left.J 7 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.2\left(3 \mathrm{H}\right.$, br s, $2^{\prime}-, 3^{\prime}-$, and $\left.5^{\prime}-\mathrm{OH}\right), 4.85(1 \mathrm{H}$, $\left.\mathrm{t}, J 7 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.1(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.1\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.9$ $\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, and $3.55\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$.

The corresponding $2^{\prime}-O, 3^{\prime}-O$-isopropylidene derivative ($5 ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OH}$) was obtained from 8 -bromo- $\mathbf{2}^{\prime}-\mathrm{O},-$ $3^{\prime}-O$-isopropylideneadenosine (as above; $3.9 \mathrm{mmol} ; 1.5 \mathrm{~g}$), which was dissolved in dry methanol (70 ml) and sodium $(0.6 \mathrm{~g}, 26 \mathrm{mmol})$ added. The solution was sealed in a dry pre-heated ($50^{\circ} \mathrm{C}$) bomb and the bomb heated to $95{ }^{\circ} \mathrm{C}$ for 1 h . It was allowed to cool, the contents tipped into water $(15 \mathrm{ml})$ and the solution neutralised with 5 m -hydrochloric acid. The solvent was removed under reduced pressure and the resulting aqueous phase extracted with chloroform $(4 \times 50 \mathrm{ml})$, back-washing with water $(2 \times 10 \mathrm{ml})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to yield $0.84 \mathrm{~g}(65 \%)$ of a pale-yellow solid (Found: $M^{+}, 337$. Calc. for $\left.\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}: M^{+}, 337\right)$; $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7\right) 259 \mathrm{~nm}$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O} 5: 1\right),{ }^{8} 7.96(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.85(1 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}$, $\left.1^{\prime}-\mathrm{H}\right), 5.19\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and $\left.4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.99(1 \mathrm{H}, \mathrm{dd}, J 1$ and $\left.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.40\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78$ $\left(2 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}_{2}\right)$, and 1.67 and $1.44(3 \mathrm{H}, \mathrm{s}$, acetonide).

The 5^{\prime}-O-mesyl derivative ($5 ; \mathrm{R}^{\mathbf{1}}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{MsO}$) was obtained as a white amorphous solid (Found: $M^{+}, 415$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}$ requires $\left.M, 415\right)$; $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 259 \mathrm{~nm}$ ($\varepsilon 15800$), which changed to 282 nm after 2 h at $60^{\circ} \mathrm{C}$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 7.95(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.95\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right)$, $5.35\left(1 \mathrm{H}, \mathrm{dd}, J 7\right.$ and $\left.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.02\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.15$ $\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.85(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MsO})$, and 1.53 and $1.32(3 \mathrm{H}, \mathrm{s}$, acetonide).
5^{\prime}-Deoxy-2'-O, 3'-O-isopropylidene-8-methoxy-5'-phenyl-
thioadenosine $\left(5 ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{SPh}\right)$.-The foregoing mesyl derivative (450 mg) was dissolved in tetrahydrofuran (THF) (40 ml ; dried over Na) and a solution of sodium (50 $\mathrm{mg})$ and thiophenol (1 g) in methanol (5 ml) was added. The solution was warmed to $55{ }^{\circ} \mathrm{C}$ for 6 h and then cooled. Water (50 ml) was added dropwise during 2 min with rapid stirring followed by 2 N -hydrochloric acid until neutral. The THF was removed under reduced pressure and the residual aqueous phase extracted with chloroform (3×40 ml). The solvent was removed from the chloroform extract leaving a brown oil which was dissolved in more chloroform (8 ml) and applied to two silica plates ($1 \mathrm{~m} \times 20 \mathrm{~cm}$ $\times 1.2 \mathrm{~mm}$), using chloroform-ethanol ($10: 1$) for elution. Two major bands were observed and these were removed separately from the chromatogram. The less polar band ($R_{\mathrm{F}} 0.68$) gave 5^{\prime}-deoxy- $\mathbf{2}^{\prime}$-O, 3^{\prime}-O-isopropylidene-8-methoxy-5^{\prime}-phenylthioadenosine as a colourless amorphous solid (210 $\mathrm{mg}, 35 \%$) (Found: $M^{+}, 429 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ requires M, 429) ; $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 288 \mathrm{~nm}$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 7.89$ ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), $7.00(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.86\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right)$, $5.42\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.94(1 \mathrm{H}, \mathrm{dd}, J 3$ and $\left.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.11\left(1 \mathrm{H}, \mathrm{td}, J 7\right.$ and $\left.3 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 3.99(3 \mathrm{H}$, s, OMe), $3.07\left(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right)$, and 1.50 and $1.32(3 \mathrm{H}$, s , acetonide).

The more polar band ($R_{F} 0.38$) yielded $2^{\prime}-0,3^{\prime}-O$-isopropyl-

needles ($235 \mathrm{mg}, 55 \%$), m.p. $231-233{ }^{\circ} \mathrm{C}$ (lit., ${ }^{21} 222$ - 224 ${ }^{\circ} \mathrm{C}$) (Found: $M^{+}, 305 . \quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $M, 305$); $\lambda_{\text {max. }}$ $\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 259 \mathrm{~nm} ; \delta\left[\mathrm{CDCl}_{3}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}, 1: 1\right] 7.88(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H}), 6.47\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{NH}_{2}\right), 5.99\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 4.95(1 \mathrm{H}$, $\left.\mathrm{d}, J 6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.5-3.1(3 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}_{2}$), and 1.49 and $1.31(3 \mathrm{H}, \mathrm{s}$, acetonide).

8-Methoxy- and 8-Hydroxy-5'-chloro-5'-deoxy- 2^{\prime} - $\mathrm{O}, 3^{\prime}$-Oisopropylideneadenosines $\left(5 ; \quad \mathrm{R}^{1}=\mathrm{OMe}, \quad \mathrm{R}^{2}=\mathrm{Cl}\right)$ and ($5 ; \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{Cl}$).-2'-O, $\mathbf{3}^{\prime}-O$-isopropylidene-8-methoxyadenosine (as above; $800 \mathrm{mg}, 2.4 \mathrm{mmol}$) was stirred in dry pyridine at $0^{\circ} \mathrm{C}$ and thionyl chloride ($1.5 \mathrm{ml}, 12.5 \mathrm{mmol}$) added. The reaction mixture was warmed to $60^{\circ} \mathrm{C}$ for 30 min and then cooled for 5 min . Water (5 ml) was added with cooling and the solution immediately neutralised with 5 m -potassium hydroxide. The solvent was removed under reduced pressure and the brown residue dissolved in chloroform (100 ml) and washed with water ($3 \times 5 \mathrm{ml}$). The chloroform extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated leaving a brown oily residue which was dissolved in chloroform (2 ml) and applied to four ($20 \times 20 \mathrm{~cm} \times 1.2 \mathrm{~mm}$) silica plates. After elution ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 8: 1$), the two strong bands, with $R_{\mathrm{F}} 0.6$ (A) and $R_{\mathrm{F}} 0.82$ (B), were removed from the glass plates and suspended in chloroformethanol $(3: 1)$. The silica was removed, washed with chloroform and the filtrate evaporated to yield a pale yellow solid (A), 5^{\prime}-chloro- 5^{\prime}-deoxy-8-hydroxy- 2^{\prime} - $\mathrm{O}, 3^{\prime}$ - O -isopropylideneadenosine $\left(5 ; \quad \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{Cl}\right)(120 \mathrm{mg}$, $20 \%), m / z 306\left(M^{+}-\mathrm{Cl}\right)$; $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, 10: 1, \mathrm{pH} 7\right)$ 268 nm ; $v_{\text {max }} 1700 \mathrm{~cm}^{-1}$ (lactam carbonyl) ; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right.$, 4: 1) $7.93\left(\mathrm{l}^{2} \mathrm{H}, \mathrm{s}, 2-\mathrm{H}\right), 5.93\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.41$ ($1 \mathrm{H}, \mathrm{dd}, J 2$ and $6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}$), $4.99\left(1 \mathrm{H}, \mathrm{dd}, J 3.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right.$), 4.25 ($1 \mathrm{H}, \mathrm{td}, J 7 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}$), 3.57 ($2 \mathrm{H}, \mathrm{dd}, J 4$ and 7 Hz , $\left.5^{\prime}-\mathrm{H}_{2}\right)$, and 1.56 and $1.37(3 \mathrm{H}, \mathrm{s}$, acetonide).

Extraction of band B gave a white amorphous solid (150 $\mathrm{mg}, 20 \%$) identified as 5^{\prime}-chloro- 5^{\prime}-deoxy- $\mathbf{2}^{\prime}$-O, 3^{\prime}-O-isopropyl-idene-8-methoxyadenosine ($5 ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Cl}$) (Found: $M^{+}, 355 . \quad \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{5} \mathrm{O}_{4}$ requires $\left.M, 355\right)$; $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{MeOH}, 10: 1) 259 \mathrm{~nm}(\varepsilon 16000) ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O} 4: 1\right)$, 8.00 $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.95\left(1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.43(1 \mathrm{H}, \mathrm{dd}, J$ $\left.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.05\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}-\mathrm{H}} 3 \mathrm{~Hz}\right), 4.29(1 \mathrm{H}, \mathrm{td}, J 7$ $\left.\mathrm{Hz}, 4^{\prime}-\mathrm{H}\right), 4.09$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.54\left(2 \mathrm{H}, \mathrm{dd}, J 4.5 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right)$, and 1.60 and $1.41(3 \mathrm{H}, \mathrm{s}$, acetonide).

8-Hydroxy-2'-O, 3^{\prime}-O-isopropylideneadenosine $\quad\left(5 ; \quad \mathrm{R}^{1}=\right.$ $\mathrm{R}^{2}=\mathrm{OH}$).-8-Bromo-2'-O, $3^{\prime}-O$-isopropylideneadenosine (as above; $1 \mathrm{~g}, 2.6 \mathrm{mmol}$) was dissolved in dry methanol $(30 \mathrm{ml})$ and sodium ($0.2 \mathrm{~g}, 8.7 \mathrm{mmol}$) was added. The yellow solution was transferred to a pre-warmed bomb at $60^{\circ} \mathrm{C}$ just before dissolution of the sodium was complete. The bomb was sealed and heated to $105^{\circ} \mathrm{C}$ for 3 h , then allowed to cool slowly. The methanolic solution was treated with lm-acetic acid until it reached pH 6 and the solvent was removed under reduced pressure. The residue was dissolved in chloroform (80 ml) and washed with saturated sodium hydrogen carbonate (5 ml) and then water $(10 \mathrm{ml})$. The solution was evaporated to 5 ml and applied to $\operatorname{six}(20 \times 20$ $\mathrm{cm} \times 1.2 \mathrm{~mm}$) silica gel plates (using $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1$, for development). The least polar band ($R_{\mathrm{F}} 0.7$) was removed from the plates to give $2^{\prime}-O, 3^{\prime}-O$-isopropylidene-8methoxyadenosine ($210 \mathrm{mg}, \mathbf{2 4} \%$). The most polar band ($R_{\mathrm{F}} 0.45$) was removed from the plates and suspended in chloroform-methanol (3:1). Separation of the silica followed by evaporation of the solvent gave 8 -hydroxy- $\mathbf{2}^{\prime}$ $\mathrm{O}, 3^{\prime}$-O-isopropylideneadenosine ${ }^{22}\left(5 ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OH}\right)(280$ $\mathrm{mg}, 40 \%$) as a pale yellow solid m.p. $150{ }^{\circ} \mathrm{C}$ (decomp.) (Found: $M^{\dagger}, 323$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}: M, 323$) ; $\lambda_{\text {max. }}$
$\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7\right) 269,255 \mathrm{sh} \mathrm{nm} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 8.00(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $6.05\left(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.34\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$, $4.95\left(1 \mathrm{H}, \mathrm{dd}, J 2.5\right.$ and $\left.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.36\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.83$ $\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$, and 1.53 and $1.32(3 \mathrm{H}, \mathrm{s}$, acetonide).

The corresponding 5^{\prime}-O-mesyl derivative was obtained as a white amorphous solid (Found: M^{+}, 306. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}-$ $\mathrm{CH}_{3} \mathrm{SO}_{3}$ requires $M, 306$) ; $\lambda_{\text {max. }} 268 \mathrm{~nm}(\varepsilon 16000)$, changing to 294 nm after 2 h at $60^{\circ} \mathrm{C}$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 7.91(1 \mathrm{H}, \mathrm{s}$, $2-\mathrm{H}), 5.99\left(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.35(1 \mathrm{H}$, dd, $J 6$ and $\left.1.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.92\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.30(3 \mathrm{H}$, $\mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 2.89(3 \mathrm{H}, \mathrm{s}, \mathrm{MsO})$, and 1.52 and 1.33 ($3 \mathrm{H}, \mathrm{s}$, acetonide).
2^{\prime}-O, 3^{\prime}-O-Isopropylidene- $\mathbf{5}^{\prime}$-O-methyl-8-phenylthioadenosine $\left(5 ; \quad \mathrm{R}^{1}=\mathrm{SPh}, \mathrm{R}^{2}=\mathrm{OMe}\right)$.-8-Bromo-2'-O, $3^{\prime}-\mathrm{O}$-isopropylidene 5^{\prime} - O-methyladenosine ($120 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved in dry methanol (10 ml) and a solution of $2 \mathrm{~m}-$ sodium methoxide (in $\mathrm{MeOH}, 1.5 \mathrm{ml}$) and then thiophenol ($100 \mathrm{mg}, 0.91 \mathrm{mmol}$) was added. The solution was warmed to $45{ }^{\circ} \mathrm{C}$ for 4 h after which t.l.c. revealed two major bands, $R_{\mathrm{F}} 0.58$ and 0.42 (starting material, $R_{\mathrm{F}} 0.51$). The reaction mixture was poured into ice-water (20 ml), neutralised, and the methanol removed under reduced pressure. The aqueous residue was extracted with chloroform ($3 \times 25 \mathrm{ml}$), the solvent reduced in volume to 5 ml and the residue applied to a silica t.l.c. plate ($1 \mathrm{~m} \times 20 \mathrm{~cm} \times 1.2 \mathrm{~mm}$) using chloro-form-ethanol as eluant. The bands with $R_{\mathrm{F}} 0.58$ and 0.42 were removed and the less polar band ($R_{\mathrm{F}} 0.58$) yielded 2'-O, 3'-O-isopropylidene-5'-O-methyl-8-phenylthioadenosine (5; $\left.\mathrm{R}^{1}=\mathrm{SPh}, \mathrm{R}^{2}=\mathrm{OMe}\right)(75 \mathrm{mg}, 60 \%)$ as a fawn coloured amorphous solid (Found: $M^{+}, 429 . \quad \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ requires $M, 429)$; $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 282 \mathrm{~nm}(\varepsilon 17200) ; \delta\left(\mathrm{CDCl}_{3}-\right.$ $\left.\mathrm{D}_{2} \mathrm{O}\right) 8.03(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 6.16(1 \mathrm{H}, \mathrm{d}$, $\left.J 2.5 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.49\left(1 \mathrm{H}, \mathrm{dd}, J 6\right.$ and $\left.2.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.94$ ($1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), $4.20\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.45$ $\left(2 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}_{2}\right), 3.20(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and 1.53 and $1.32(3 \mathrm{H}, \mathrm{s}$, acetonide).

The more polar band was separated similarly and yielded 2^{\prime}-O, 3^{\prime}-O-isopropylidene- 5^{\prime}-O-methyl-8-methoxyadenosine (5; $\left.\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{OMe}\right)(20 \mathrm{mg}, 20 \%)$ as a white amorphous solid (Found: $M^{+}, 351 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $M, 351$); $\lambda_{\text {max }}$ $\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 255 \mathrm{~nm}(\varepsilon 15200) ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 7.98(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H}), 5.95\left(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.41(1 \mathrm{H}, \mathrm{dd}, J 6$ and $\left.2.5 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{dd}, J 3.5\right.$ and $\left.6 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.15(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.02(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{OMe}), 3.45\left(2 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, 3.22 ($3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{OMe}$), and 1.55 and $1.35(3 \mathrm{H}, \mathrm{s}$, acetonide).
5^{\prime}-Deoxy-2'-O, 3^{\prime}-O-isopropylidene-5',8-cycloadenosine (3; $\mathrm{X}=\mathrm{CH}_{2}$).-(a) $2^{\prime}-O, 3^{\prime}$ - O-Isopropylidene-8-phenylthioadenosine (5; $\left.\mathrm{R}^{1}=\mathrm{SPh}, \mathrm{R}^{2}=\mathrm{OH}\right)(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ was dissolved in acetonitrile (80 ml) and t-butyl hydroperoxide (4 ml) was added. The solution was purged with argon for several min and then exposed to an 800 W u.v. reactor (200 -300 nm) for 20 h at $35{ }^{\circ} \mathrm{C} .{ }^{1}$ T.1.c. $\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}, 5: 1\right)$ then showed four bands: $R_{\mathrm{F}} 0.58$ (fluorescent $c a .2 \%$), R_{F} 0.43 (ca. 30), $R_{\mathrm{F}} 0.35$ (ca. 25), and $R_{\mathrm{F}} 0.28$ (ca. 10). The solution was evaporated and the residue dissolved in chloroform (2 ml) and applied to four ($20 \times 20 \mathrm{~cm} \times 1.2$ mm) silica plates using chloroform-methanol ($5: 1$) as eluant. The bands were removed, and each was suspended in chloroform-ethanol ($\mathbf{3}: \mathbf{1}$) followed by removal of the silica gel, and the solvent evaporated. The band with R_{F} 0.43 gave $2^{\prime}-O, 3^{\prime}-O$-isopropylideneadenosine ($25 \mathrm{mg}, 30 \%$) (formed by hydrogen abstraction from the solvent) (Found: $M^{+}, 307$. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}: M, 307\right)$; $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right.$ at $\mathrm{pH} 7) 261 \mathrm{~nm}$.

The band at $R_{\mathrm{F}} 0.35\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 7: 1\right)$ yielded a
colourless product ($\mathbf{1 8} \mathrm{mg}, \mathbf{2 5} \%$) identified as $(S)-2^{\prime}-O, 3^{\prime}-O$ -isopropylidene- $5^{\prime}, 8$-cycloadenosine (3 b) (Found: $M^{+}, 305$. Calc. for $\left.\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4}: M, 305\right)$; $\lambda_{\text {max }}\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 265 \mathrm{~nm}$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 1: 1\right) 7.93(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.04\left(1 \mathrm{H}, \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{H}\right)$, $5.05\left(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 4.51$ $\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$, and 1.46 and $1.24(3 \mathrm{H}, \mathrm{s}$, acetonide).
The band at $R_{F} 0.28\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 7: 1\right)$ yielded a colourless product ($\mathbf{1 0} \mathrm{mg}, \mathbf{1 5 \%}$) identified as (R) $-2^{\prime}-O, 3^{\prime}-O$-iso-propylidene-5 ${ }^{\prime}, 8$-cycloadenosine (3a) (Found: M^{+}, 305); $\lambda_{\text {max. }}\left(\mathrm{H}_{2} \mathrm{O}\right.$ at pH 7$) 264 \mathrm{~nm}$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 1: 1\right) 7.91$ $(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.10\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{l}^{\prime}-\mathrm{H}\right), 5.1-4.5\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$, $3^{\prime}-, 4^{\prime}-$ and $5^{\prime}-\mathrm{H}$), and 1.49 and $1.27(3 \mathrm{H}, \mathrm{s}$, acetonide).
(b) The same three compounds were also formed (yields 8,7 and 2%, respectively) when 8 -bromo- 2^{\prime}-O, 3^{\prime} - O-isopropylideneadenosine ($300 \mathrm{mg}, 0.8 \mathrm{mmol}$) was irradiated under identical conditions in the presence of di-t-butyl peroxide (2.5 ml) and tri-n-propylsilane (3 ml). The products were characterised by R_{F} mobility and u.v., n.m.r., and mass spectroscopy.
2^{\prime}-O, 3'-O-Isopropylidene-5'-O-methyl-5',8-cycloadenosines ($3 ; \mathrm{X}=\mathrm{CHOMe}$).-2'-O, $3^{\prime}-O$-Isopropylidene- 5^{\prime} - O-methyl8 -phenylthioadenosine ($60 \mathrm{mg}, 140 \mathrm{mmol}$) was dissolved in acetonitrile (20 ml) and t-butyl hydroperoxide (500 mg of a 70% solution in water, 3.9 mmol) was added. The solution was purged with argon for 5 min and was irradiated for 8 h , after which examination by t.l.c. showed that two major products had been formed and only a trace of starting material remained. The acetonitrile was removed under reduced pressure and the residual oil was dissolved in chloroform (5 ml) and applied to three silica plates $(20 \times 20 \mathrm{~cm} \times 1.2 \mathrm{~mm})$ using chloroform-ethanol ($10: 1$) as eluant. The individual bands were separated and the products isolated: (i) $R_{\mathrm{F}} 0.32$ (least polar band) yielded (S)-2'-O, 3^{\prime} - O-isopropylidene- 5^{\prime} - O-methyl- $5^{\prime}, 8$-cycloadenosine ($15 \mathrm{mg}, 35 \%$) as white crystals, m.p. $210^{\circ} \mathrm{C}$ (decomp.) (Found: $M^{+}, 319 . \quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $M, 319$); $\lambda_{\text {max }} 263$ nm ($\varepsilon 17500$) ; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 8.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.28(1 \mathrm{H}$, s, $\left.\mathrm{l}^{\prime}-\mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 4.84(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}$, $\left.4^{\prime}-\mathrm{H}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{OMe}\right)$, and 1.55 and $1.28(3 \mathrm{H}, \mathrm{s}$, acetonide).
(ii) $R_{\mathrm{F}} 0.22$ (most polar band) yielded (R)-2' $-O, 3^{\prime}-O$-iso-propylidene- $5^{\prime}-O$-methyl $-5^{\prime}, 8$-cycloadenosine as colourless crystals ($15 \mathrm{mg}, 35 \%$), m.p. $223{ }^{\circ} \mathrm{C}$ (decomp.) (Found: M^{+}, 319. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $M, 319$) ; $\lambda_{\text {max }} 262 \mathrm{~nm}(\varepsilon 17500)$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{D}_{2} \mathrm{O}\right) 8.33(\mathrm{l} \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.37\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 4.89$ ($\left.1 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 4.32\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right)$, 3.80 ($1 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}$), 3.62 ($3 \mathrm{H}, \mathrm{s}, 5^{\prime}$-OMe), and 1.56 and $1.28(3 \mathrm{H}, \mathrm{s}$, acetonide).

A trace ($1 \mathrm{mg}, 2-3 \%$) of another product was detected which was probably formed by hydrogen abstraction from the solvent.

We thank Professor S. F. Mason and Dr. A. F. Drake of King's College, London for their help and advice in measuring c.d. spectra, and Professor M. F. Lappert for helpful discussions.
[1/1448 Received, 16th September, 1981]

REFERENCES

${ }^{1}$ D. Gani, A. W. Johnson, and M. F. Lappert, J. Chem. Soc., Perkin Trans. 1, 1981, 3065; J. Chem. Soc., Chem. Commun., 1980, 1244.
${ }^{2}$ K. N. V. Duong, A. Gaudemer, M. D. Johnson, R. Quillivic, and J. Zylber, Tetrahedron Lett., 1975, 2997.
${ }^{3}$ A. J. Bowles, A. Hudson, and R. A. Jackson, J. Chem. Soc. $B, 1971,1947$.
4. A. Matsuda, H. Tezuka, and T. Ueda, Tetrahedron, 1978, 34, 2449.
${ }^{5}$ S. Fujii, T. Fujiwara, and K. Tomita, Nucleic Acids Res., 1976, 3, 1985.
${ }^{6}$ S. N. Bose and R. J. Davies, J. Chem. Soc., Perkin Trans. 2, 1979, 1194.

7 E. Westhof, H. Plach, I. Kuno, and H-D. Lüdemann, Nucleic Acids Res., 1977, 4, 939.

8 A. Gaudemer, F. Nief, R. Pontikis, and J. Zylber, Org. Magn. Reson., 1977, 10, 135.
${ }^{9}$ R. H. Sarma, C-H. Lee, F. E. Evans, N. Yathindra, and M. Sundaralingam, J. Am. Chem. Soc., 1974, 96, 7337.
${ }^{10}$ M. Ikehara and S. Yamada, Chem. Pharm. Bull., 1971, 19, 104.
${ }^{11}$ D. W. Miles, R. K. Robins, and H. Eyring, J. Phys. Chem., 1967, 71, 3931.
${ }^{12}$ D. W. Miles, C. B. Townsend, M. J. Robins, R. K. Robins, W. H. Inskeep, and H. Eyring, J. Am. Chem. Soc., 1971, 98, 1600.

13 J. M. Delabar, W. Guschlbauer, C. Schneider, and J. Thiery, Biochimie, 1972, 54, 1041

14 W. Saenger, J. Am. Chem. Soc., 1971, 98, 3035.
15 A. R. Todd, V. M. Clark, and J. Zussman, J. Chem. Soc., 1951, 2952.
${ }_{16}$ K. Kikugawa and H. Ichino, Tetrahedron Lett., 1971, 87.
${ }^{17}$ D. Gani, M. R. Hollaway, A. W. Johnson, M. F. Lappert, and O. C. Wallis, J. Chem. Res. (S), 1981, 190; $(M), 2327$.
${ }_{18}$ M. Ikehara and M. Kaneko, Tetrahedron, 1970, 26, 4251.
${ }^{19}$ M. Ikehara, H. Tada, and M. Kaneko, Tetrahedron, 1968, 24, 3489.
${ }_{20}$ R. E. Holmes and R. K. Robins, J. Am. Chem. Soc., 1965, 87, 1772.
${ }_{21}$ K. L. Nagpal and M. M. Dhar, Tetrahedron Lett., 1968, 47; see also, M. Ikehara, Acc. Chem. Res., 1969, 2, 47.

22 A. Hampton and R. R. Chawla, J. Carbohydr. Nucleosides, Nucleotides, 1975, 2, 281.

